Cytoplasmic acidosis as a determinant of flooding intolerance in plants.

Abstract
We present evidence that cytoplasmic acidosis is a cause of meristematic death in hypoxic root tips of maize and pea seedlings. Usually, leakage of acid from the vacuole is responsible for cytoplasmic acidosis. Leakage of acid, which occurs earlier during hypoxia in pea root tips than in maize root tips, appears to account for the lower tolerance of peas for hypoxia. Cytoplasmic acidosis is accelerated in maize root tips that are either (i) deficient in alcohol dehydrogenase, so that lactic acid production continues throughout hypoxia, or (ii) exposed to external CO2 during hypoxia, or (iii) perfused slowly so that escape of CO2 produced during ethanolic fermentation is retarded. All three conditions decrease the length of time maize root tips can tolerate hypoxia; more rapid cytoplasmic acidosis is associated with more rapid death under hypoxia. Possible mechanisms by which cytoplasmic acidosis leads to death are suggested; the mechanism does not involve inhibition of glycolysis by low pH.