Review of secondary and tertiary reactions, and neutron scattering as diagnostic techniques for inertial confinement fusion targets

Abstract
Fuel areal density, 〈ρR〉, is a fundamental quantity for ICF implosions. For current and future targets, areal densities are large enough that a variety of neutron based diagnostic techniques can be used to determine fuel 〈ρR〉. These include measurements based on the secondary production of DT neutrons from initially pure deuterium fuel and, for higher 〈ρR〉 values, techniques utilizing high energy tertiary neutrons or lower energy scattered neutrons. This paper describes these techniques and gives an overview of the current experimental status.