Experimental Study of Intracranial Hematoma Detection with Flat Panel Detector C-Arm CT

Abstract
BACKGROUND AND PURPOSE: Intracranial hemorrhage is a commonly acknowledged complication of interventional neuroradiology procedures, and the ability to image hemorrhage at the time of the procedure would be very beneficial. A new C-arm system with 3D functionality extends the capability of C-arm imaging to include soft-tissue applications by facilitating the detection of low-contrast objects. We evaluated its ability to detect small intracranial hematomas in a swine model. MATERIALS AND METHODS: Intracranial hematomas were created in 7 swine by autologous blood injection of various hematocrits (19%–37%) and volumes (1.5–5 mL). Four animals received intravascular contrast before obtaining autologous blood (group 1), and 3 did not (group 2). We scanned each animal by using the C-arm CT system, acquiring more than 500 images during a 20-second rotation through more than 200°. Multiplanar reformatted images with isotropic resolution were reconstructed on the workstation by using product truncation, scatter, beam-hardening, and ring-artifact correction algorithms. The brains were harvested and sliced for hematoma measurement and compared with imaging findings. RESULTS: Five intracranial hematomas were created in group 1 animals, and all were visualized. Six were created in group 2, and 3 were visualized. One nonvisualized hematoma was not confirmed at necropsy. All the others in both groups were confirmed. In group 1 (with contrast), small hematomas were detectable even when the hematocrit was 19%–20%. In group 2 (without contrast) C-arm CT was able to detect small hematomas (2) created with hematocrits of 29%–37%. The area of hematoma measured from the C-arm CT data was, on average, within 15% of the area measured from harvested brain. CONCLUSIONS: The image quality obtained with this implementation of C-arm CT was sufficient to detect experimentally created small intracranial hematomas. This capability should provide earlier detection of hemorrhagic complications that may occur during neurointerventional procedures.