Metabolic and perceptual responses while carrying external loads on the head and by yoke

Abstract
The purpose of this study was to determine the metabolic efficiency and perceptual acceptability of transporting external loads on the head and by yoke. Ten young males (24·2 ±3·9 years) of average physical fitness ([Vdot]O2max=49·8 ± 6·5ml kg-1 min-1) walked for 6min on a level motor-driven treadmill at 53·6, 73·8 and 93·9m min-1. Subsequently, all subjects carried external loads (11·6, 16·1 and 20·6 kg) at the same speeds using the headpack (HP), transverse yoke (TY) and frontal yoke (FY) modes of load carriage. Measurements were obtained for oxygen uptake ([Vdot]O2 l min-1), local ratings of perceived exertion (RPE-L) and the overall perceived exertion (RPE-O). The [Vdot]O2 was used in the computation of the metabolic efficiency ([Vdot]O2 ml kg total weight-1 min-1). Significant main effects (mode, load and speed) and three interaction effects (mode × load, mode × speed and load × speed) were obtained for metabolic efficiency. Scheffé post hoc analysis revealed that the metabolic efficiency for the TY and HP were greater than the FY while transporting the 16·1 and 20·6kg loads at all walking speeds (p -1. At 93·9 m min-1, all external loads transported were associated with a loss in metabolic efficiency. The RPE-L for the HP was lower than the FY (p < 0·05). Both the RPE-0 and RPE-L increased as the walking speeds and external loads were increased. The findings suggest that load transportation using the FY system is both physiologically and perceptually unacceptable.