Abstract
In this article, we present a set of computational tools for systematic characterisation of ordered and disordered porous materials. These tools include calculation of the accessible surface area and geometric pore size distribution, analysis of the structure connectivity and percolation analysis of the porous space. We briefly discuss the algorithms behind these calculations. To demonstrate the capabilities of the tools and the type of insights that can be gained from their application, we consider a series of case studies. These case studies include small molecular fragments, several crystalline metal-organic materials, and variants of these materials with induced defects and disorder in their structure. The simulation package is available upon request.