Abstract
Aerial photographs from 1947 and 1966, satellite optical imagery from 1973 and 1980, and interferometric synthetic aperture radar (InSAR) data from 1992, 1996 and 2000 are employed to detect ice-shelf changes in Pine Island Bay, Antarctica. The front position of the fast-flowing central ice shelf did not migrate discernibly over the past 50 years. New cracks and rifts appeared in the 1990s, however, that reveal a major weakening of the ice shelf. At the grounding-line center, the ice shelf thinned 21 m in 8 years. The northern, slow-moving ice shelf also shows signs of decay: (1) its calving front is retreating at an accelerating rate; and (2) the ice shelf is slowly unpinning from its bedrock anchors. These changes are taking place in a region well beyond the temperature-dependent limit of viability of ice shelves, and hence differ from those observed along the Antarctica Peninsula. They are likely due to a change in oceanic forcing, not to a change in air temperature. One possibility is that the documented intrusion of warm circumpolar deep water on the continental shelf has increased basal melting compared to that required to maintain the ice shelf in a state of mass balance, and that this has triggered a general retreat of ice in this sector.