Efficient and Selective Aerobic Oxidation of Alcohols into Aldehydes and Ketones Using Ruthenium/TEMPO as the Catalytic System

Abstract
The combination of RuCl2(PPh3)3 and TEMPO affords an efficient catalytic system for the aerobic oxidation of a variety of primary and secondary alcohols, giving the corresponding aldehydes and ketones, in >99% selectivity in all cases. The Ru/TEMPO system displayed a preference for primary vs secondary alcohols. Results from Hammett correlation studies (ρ = −0.58) and the primary kinetic isotope effect (kH/kD = 5.1) for the catalytic aerobic benzyl alcohol oxidations are inconsistent with either an oxoruthenium (ORu) or an oxoammonium based mechanism. We postulate a hydridometal mechanism, involving a “RuH2(PPh3)3” species as the active catalyst. TEMPO acts as a hydrogen transfer mediator and is either regenerated by oxygen, under catalytic aerobic conditions, or converted to TEMPH under stoichiometric anaerobic conditions.