Abstract
The sensitivity of engine friction to lubricant viscometry has been determined for a modern fuelefficient engine, the Mercedes Benz M111 2.0 litre gasoline engine, under both cold starting and fully warmed-up conditions. The study has taken into account realistic lubricant viscometric parameters such as the lubricant viscosity variation with shear rate and temperature. Results are reported for the variation of engine friction with different monograde and multigrade lubricants, including the distribution of friction losses between valve train, piston assembly and bearings with the different lubricant types. The work also enabled estimates to be made of the proportion of hydrodynamic and boundary friction in the engine, since the vast majority of boundary lubrication occurs in the valve train. Knowledge of the ratio of boundary to hydrodynamic lubrication was found to be important since the two key lubricant parameters that can be varied are (a) viscosity and (b) the introduction of a friction modifier additive. The viscosity of the lubricant will affect the hydrodynamically lubricated parts of the engine whereas the presence of a friction modifier will reduce boundary friction in the engine. Brief comparisons are made of the lubricant sensitivity of the Mercedes Benz M111 engine with other important fuel-efficient engines (such as the Ford Sequence VI and Ford Sequence VIA engines).