Nanochain-structured mesoporous tungsten carbide and its superior electrocatalysis

Abstract
A unique nanochain-structured mesoporous tungsten carbide (m-NCTC) was synthesized through a simple combined hydrothermal reaction–post heat-treatment approach. When loaded with Pt, the nanostructure (Pt/m-NCTC), as a catalyst, demonstrates high unit mass electroactivity (323 A (g Pt)−1 ) and high resistance to CO poisoning for methanol oxidation, and is much superior to Pt/C, one of the known excellent electrocatalysts. Its high reaction activity and strong poison-resistivity is very likely due to the unique mesoporous nanochain structure and high specific surface area (113 m2 g−1). This work provides a universal and economic method to synthesize novel mesoporous structured materials and provides scientific insight of mesoporous structured electrocatalysis, thus leading to various important applications as a catalyst in fuel cells, solar cells, sensors and in organic synthesis reactions.