Respiratory-related cortical potentials evoked by inspiratory occlusion in humans

Abstract
It has long been recognized that humans can perceive respiratory loads. There have been several studies on the detection and psychophysical quantification of mechanical load perception. This investigation was designed to record cortical sensory neurogenic activity related to inspiratory mechanical loading in humans. Inspiration was periodically occluded in human subjects while the electroencephalographic (EEG) activity in the somatosensory region of the cerebral cortex was recorded. The onset of inspiratory mouth pressure (Pm) was used to initiate signal averaging of the EEG signals. Cortical evoked potentials elicited by inspiratory occlusions were observed when C3 and C alpha were referenced to CZ. This evoked potential was not observed with the control (unoccluded) breaths. There was considerable subject variability in the peak latencies that was related to the differences in the inspiratory drive, as measured by occlusion pressure (P0.1). The results of this study demonstrate that neurogenic activity can be recorded in the somatosensory region of the cortex that is related to inspiratory occlusions. The peak latencies are longer than analogous somatosensory evoked potentials elicited by stimulation of the hand and foot. It is hypothesized that a portion of this latency difference is related to the time required for the subject to generate sufficient inspiratory force to activate the afferents mediating the cortical response.