The Free Radical Scavenger α‐Phenyl‐Tert‐Butyl Nitrone Aggravates Hippocampal Apoptosis and Learning Deficits in Experimental Pneumococcal Meningitis

Abstract
The effect of adjuvant therapy with the radical scavenger α-phenyl-tert-butyl nitrone (PBN; 100 mg/kg given intraperitoneally every 8 h for 5 days) on brain injury and learning function was evaluated in an infant rat model of pneumococcal meningitis. Meningitis led to cortical necrotic injury (median, 3.97% [range, 0%–38.9%] of the cortex), which was reduced to a median of 0% (range, 0%–30.9%) of the cortex (P < .001) by PBN. However, neuronal apoptosis in the hippocampal dentate gyrus was increased by PBN, compared with that by saline (median score, 1.15 [range, 0.04–1.73] vs. 0.31 [range, 0–0.92]; P < .001). Learning function 3 weeks after cured infection, as assessed by the Morris water maze, was decreased, compared with that in uninfected control animals (P < .001). Parallel to the increase in hippocampal apoptosis, PBN further impaired learning in infected animals, compared with that in saline-treated animals (P < .02). These results contrast with those of an earlier study, in which PBN reduced cortical and hippocampal neuronal injury in group B streptococcal meningitis. Thus, in pneumococcal meningitis, antioxidant therapy with PBN aggravates hippocampal injury and learning deficits.