Differences in Bcl‐2 expression by T‐cell subsets alter their balance after in vivo irradiation to favor CD4+Bcl‐2hi NKT cells

Abstract
Although it is well known that in vivo radiation depletes immune cells via the Bcl‐2 apoptotic pathway, a more nuanced analysis of the changes in the balance of immune‐cell subsets is needed to understand the impact of radiation on immune function. We show the balance of T‐cell subsets changes after increasing single doses of total body irradiation (TBI) or after fractionated irradiation of the lymphoid tissues (TLI) of mice due to differences in radioresistance and Bcl‐2 expression of the NKT‐cell and non‐NKT subsets to favor CD4+Bcl‐2hi NKT cells. Reduction of the Bcl‐2lo mature T‐cell subsets was at least 100‐fold greater than that of the Bcl‐2hi subsets. CD4+ NKT cells upregulated Bcl‐2 after TBI and TLI and developed a Th2 bias after TLI, whereas non‐NKT cells failed to do so. Our previous studies showed TLI protects against graft versus host disease in wild‐type, but not in NKT‐cell‐deficient mice. The present study shows that NKT cells have a protective function even after TBI, and these cells are tenfold more abundant after an equal dose of TLI. In conclusion, differential expression of Bcl‐2 contributes to the changes in T‐cell subsets and immune function after irradiation.
Funding Information
  • National Institutes of Health (NIAID RO1 AI-37683, NCI PO1 CA-49605, NHLBI RO1 HL-58250, NHLBI PO1 HL-57443)