Abstract
The time course of force and stiffness during a twitch was determined at 6 and 26 degrees C in frog semitendinosus muscle bundles using the transmission time technique of Schoenberg, M., J.B. Wells, and R.J. Podolsky, 1974, J. Gen. Physiol. 64:623–642. Sarcomere shortening due to series compliance was also measured using a laser light diffraction technique. Following stimulation, stiffness developed more rapidly than force, but had a slower time course than published Ca2+ transients determined from light signals using Ca2+ sensitive dyes (Baylor, S.M., W.K. Chandler, and M.W. Marshall, 1982, J. Physiol. (Lond.). 331:139–177). Stiffness (S) did not reach its tetanic value during a twitch at 6 or 26 degrees C, although at 6 degrees C, it approached close to this value with S-twitch/S-tetanus = 0.82 +/- 0.07 (+/- SEM). During relaxation, force fell more rapidly than stiffness both for a twitch and also a tetanus. Also in this paper, several of the assumptions inherent in using the transmission time technique for the measurement of stiffness are considered in detail