The Tomato Cf-5 Disease Resistance Gene and Six Homologs Show Pronounced Allelic Variation in Leucine-Rich Repeat Copy Number

Abstract
The tomato Cf-2 and Cf-5 genes confer resistance to Cladosporium fulvum and map to a complex locus on chromosome 6. The Cf-5 gene has been isolated and is predicted to encode a largely extracytoplasmic protein containing 32 leucine-rich repeats (LRRs), resembling the previously isolated Cf-2 gene, which has 38 LRRs. Three haplotypes of this locus from Lycopersicon esculentum, L. pimpinellifolium, and L. esculentum var cerasiforme were compared, and five additional homologs of Cf-5 were sequenced. All share extensive sequence identity, particularly within the C-terminal portions of the predicted proteins. In striking contrast to the Cf-9 gene family, six of seven homologs in the Cf-2/Cf-5 gene family vary in LRR copy number, ranging from 25 to 38 LRRs. Cf-5 and one adjacent homolog differ by only two LRRs. Recombination events that vary the LRR copy number in this region could provide a mechanism for the generation of new specificities for recognition of different ligands. A recombination breakpoint between the Cf-2 and Cf-5 loci was fully characterized and shown to be intragenic.