Molecular Detection of a Novel Human Influenza (H1N1) of Pandemic Potential by Conventional and Real-Time Quantitative RT-PCR Assays

Abstract
Background: Influenza A viruses are medically important viral pathogens that cause significant mortality and morbidity throughout the world. The recent emergence of a novel human influenza A virus (H1N1) poses a serious health threat. Molecular tests for rapid detection of this virus are urgently needed. Methods: We developed a conventional 1-step RT-PCR assay and a 1-step quantitative real-time RT-PCR assay to detect the novel H1N1 virus, but not the seasonal H1N1 viruses. We also developed an additional real-time RT-PCR that can discriminate the novel H1N1 from other swine and human H1 subtype viruses. Results: All of the assays had detection limits for the positive control in the range of 1.0 × 10−4 to 2.0 × 10−3 of the median tissue culture infective dose. Assay specificities were high, and for the conventional and real-time assays, all negative control samples were negative, including 7 human seasonal H1N1 viruses, 1 human H2N2 virus, 2 human seasonal H3N2 viruses, 1 human H5N1 virus, 7 avian influenza viruses (HA subtypes 4, 5, 7, 8, 9, and 10), and 48 nasopharyngeal aspirates (NPAs) from patients with noninfluenza respiratory diseases; for the assay that discriminates the novel H1N1 from other swine and human H1 subtype viruses, all negative controls were also negative, including 20 control NPAs, 2 seasonal human H1N1 viruses, 2 seasonal human H3N2 viruses, and 2 human H5N1 viruses. Conclusions: These assays appear useful for the rapid diagnosis of cases with the novel H1N1 virus, thereby allowing better pandemic preparedness.