Imaging of subcutaneous blood vessels and flow velocity profiles by optical coherence tomography

Abstract
We have applied a compact low power rapid scanning Doppler Optical Coherence Tomography system to monitor multi-dimensional velocity profiles within the complex vessels and simultaneous real-time non-invasive imaging of skin tissues morphology in vivo, in the wavelength range of 1.3–1.5 nm. Optical clearing of skin tissues has been utilized to achieve depth of OCT images up to 1.7 mm. Current approach enables applying low-power (0.4–0.5 mW) and low-noise broadband near-infrared light sources and obtaining OCT images with down to 12 μm spatial resolution. Two-dimensional time-domain OCT images of complex flow velocity profiles in blood vessel phantom and in vivo subcutaneous human skin tissues are presented. The effect of optical clearing on in vivo images is demonstrated and discussed.