Unique in utero identification of fetuses in multifetal mouse pregnancies by placental bidirectional arterial spin labeling MRI

Abstract
Noninvasive imaging is a critical part of the study of developing embryos/fetuses, particularly in the context of alterations of gene expression in genetically modified animals. However, in litter‐bearing animals, such as mice, the inability to accurately identify individual embryo/fetus in utero is a major obstacle to longitudinal, noninvasive in vivo studies. Arterial spin labeling MRI was adopted here to determine the fetal order along the uterine horns in vivo, based on the specific pattern of dual arterial blood supply within the mouse uterine horns. Blood enters the mouse uterus cranially through the ovarian artery and caudally through the uterine artery. Saturation slices were alternately placed on the maternal heart or on the bifurcation point of the common iliac artery, thereby saturating either downward inflow via the ovarian arteries or upward inflow via the uterine arteries, respectively. Saturation maps provided a unique signature with highly significant correlation between the direction‐dependent magnetization transfer and the position of the fetuses/placentas along the uterine horns. The bidirectional arterial spin labeling‐MRI method reported here opens possibilities to determine and pursue phenotypic alterations in fetuses and placentas in longitudinal studies of transgenic and knockout mice models, and for studying defects in placental vascular architecture. Magn Reson Med, 2012.
Funding Information
  • 7th Framework European Research Council Advanced Grant (232640-IMAGO)
  • Helen and Morris Mauerberger Chair in Biological Sciences