Field-Programmable Gate Array-Based Hardware Design of Optical Fiber Transducer Integrated Platform

Abstract
This study focuses on the hardware architecture of a Raman scattering distributed optical fiber transducer platform, the principles of Raman scattering are analyzed, and the output 2 analog electrical signals are converted to digital signals at a 16-bit sampling rate by an Analog-to-Digital Converter (ADC). The system is implemented based on the FPGA. The integrated circuit is responsible for controlling the data acquisition process. The differential amplifier circuit, FPGA peripheral circuit, and CPU subsystem circuit, which takes ARM as the core, are separately designed. The composition of software includes a DDR2 (Double Data Rate 2) driver and central control logic. In this study, the optical fiber transducer platform has been tested. The CPU DDR2 is read/written by the test program respectively. According to the results, the program passes the read/write test. The NAND FLASH is tested. The results show that this program returns all operations successfully. The timing tests of the DDR2 interface and data latching are conducted. The results show that the read/write operations ensure that the clock and data curves are aligned. Therefore, the optical fiber transducer integrated platform designed in this study is effective.