Fatigue Behavior of Zr58Cu15.46Ni12.74Al10.34Nb2.76Y0.5 Bulk Metallic Glass Fabricated by Industrial-Grade Zirconium Raw Material

Abstract
In this work, the fatigue behavior of a low-cost Zr58Cu15.46Ni12.74Al10.34Nb2.76Y0.5 (at%) bulk metallic glass (BMG) fabricated by industrial-grade Zirconium raw material was investigated under three-point bending loading mode. X-ray, fatigue tests under different stress amplitude and fatigue fractography were conducted in order to characterize the amorphous structure, fatigue stress-life (S-N) curve and fracture mechanism, respectively. It is found that the X-ray diffraction (XRD) result showed a fully amorphous structure due to high glass-forming ability, cracks initiated from inclusions near the rectangular corners at tensile surfaces and the fatigue endurance limit (~168 MPa) and fatigue ratio (~0.13) termed as fatigue endurance limit divided by ultimate tensile strength in stress amplitude were comparable to the similar BMG prepared by high pure raw materials.
Funding Information
  • National Natural Science Foundation of China (51735003)