Abstract
An 8kb segment of DNA from the 58/59 min region of the E. coli chromosome, which complements the defect of a mutant devoid of hydrogenase 3 activity, has been sequenced. Eight open reading frames were identified which are arranged in a transcriptional unit; all open reading frames were transcribed and translated in vivo in a T7 promoter/polymerase system. Analysis of the amino acid sequences derived from the nucleic acid sequences revealed that one of them, open reading frame 5 (0RF5), exhibits significant sequence similarity to conserved regions of the large subunit from Ni/Fe hydrogenases. Two of the open reading frames (orf2, orf6) code for proteins apparently carrying iron-sulphur clusters of the 4Fe/4S ferredoxin type. The product of one of the open reading frames, orf7, displays extensive sequence similarity with protein G from the chloroplast electron transport chain. ORF3 and ORF4, on the other hand, are extremely hydrophobic proteins with nine and six putative transmembrane helices, respectively. Over a limited hydrophilic sequence stretch, bordered by putative transmembrane areas, ORF3 and ORF4 exhibit homology with subunits 4 and 1 of mitochondrial and plastid NADH-ubiquinol oxidoreductases, respectively. The operon described, therefore, appears to comprise genes for redox carriers linking formate oxidation to proton reduction and for a hydrogenase of hitherto unique composition.