Effect of Postextubation High-Flow Nasal Cannula vs Noninvasive Ventilation on Reintubation and Postextubation Respiratory Failure in High-Risk Patients

Abstract
Question Is high-flow nasal cannula noninferior to noninvasive ventilation for preventing reintubation and postextubation respiratory failure? Findings In this multicenter randomized noninferiority clinical trial that included 604 adults, the proportion requiring reintubation was 22.8% with high-flow therapy vs 19.1% with noninvasive ventilation, and postextubation respiratory failure was observed in 26.9% with high-flow therapy vs 39.8% with noninvasive ventilation, reaching the noninferiority threshold. Meaning High-flow nasal cannula immediately after scheduled extubation was not inferior to noninvasive mechanical ventilation for risk of reintubation and postextubation respiratory failure in patients at high risk of reintubation. Importance High-flow conditioned oxygen therapy delivered through nasal cannulae and noninvasive mechanical ventilation (NIV) may reduce the need for reintubation. Among the advantages of high-flow oxygen therapy are comfort, availability, lower costs, and additional physiopathological mechanisms. Objective To test if high-flow conditioned oxygen therapy is noninferior to NIV for preventing postextubation respiratory failure and reintubation in patients at high risk of reintubation. Design, Setting, and Participants Multicenter randomized clinical trial in 3 intensive care units in Spain (September 2012-October 2014) including critically ill patients ready for planned extubation with at least 1 of the following high-risk factors for reintubation: older than 65 years; Acute Physiology and Chronic Health Evaluation II score higher than 12 points on extubation day; body mass index higher than 30; inadequate secretions management; difficult or prolonged weaning; more than 1 comorbidity; heart failure as primary indication for mechanical ventilation; moderate to severe chronic obstructive pulmonary disease; airway patency problems; or prolonged mechanical ventilation. Interventions Patients were randomized to undergo either high-flow conditioned oxygen therapy or NIV for 24 hours after extubation. Main Outcomes and Measures Primary outcomes were reintubation and postextubation respiratory failure within 72 hours. Noninferiority margin was 10 percentage points. Secondary outcomes included respiratory infection, sepsis, and multiple organ failure, length of stay and mortality; adverse events; and time to reintubation. Results Of 604 patients (mean age, 65 [SD, 16] years; 388 [64%] men), 314 received NIV and 290 high-flow oxygen. Sixty-six patients (22.8%) in the high-flow group vs 60 (19.1%) in the NIV group were reintubated (absolute difference, −3.7%; 95% CI, −9.1% to ∞); 78 patients (26.9%) in the high-flow group vs 125 (39.8%) in the NIV group experienced postextubation respiratory failure (risk difference, 12.9%; 95% CI, 6.6% to ∞). Median time to reintubation did not significantly differ: 26.5 hours (IQR, 14-39 hours) in the high-flow group vs 21.5 hours (IQR, 10-47 hours) in the NIV group (absolute difference, −5 hours; 95% CI, −34 to 24 hours). Median postrandomization ICU length of stay was lower in the high-flow group, 3 days (IQR, 2-7) vs 4 days (IQR, 2-9; P=.048). Other secondary outcomes were similar in the 2 groups. Adverse effects requiring withdrawal of the therapy were observed in none of patients in the high-flow group vs 42.9% patients in the NIV group (P < .001). Conclusions and Relevance Among high-risk adults who have undergone extubation, high-flow conditioned oxygen therapy was not inferior to NIV for preventing reintubation and postextubation respiratory failure. High-flow conditioned oxygen therapy may offer advantages for these patients. Trial Registration clinicaltrials.gov Identifier: NCT01191489