Expression in Saccharomyces cerevisiae of a gene associated with cytoplasmic male sterility from maize: Respiratory dysfunction and uncoupling of yeast mitochondria

Abstract
We asked whether the mitochondrial T-urf13 gene, associated with the male sterility phenotype of T cytoplasm in maize, can be expressed in Saccharomyces cerevisiae and whether this expression can mimic the effects observed in maize. We introduced the universal code equivalent of the T-urf13 gene into the S. cerevisiae nucleus by transformation and directed its translation product into mitochondria by means of a fusion with the targeting presequence from Neurospora crassa ATPase subunit 9. We show that expression of the universal code equivalent of the T-urf13 gene in the yeast nucleus does indeed mimic its effects in maize: respiratory growth of yeast is inhibited, respiration-deficient cytoplasmic mutants accumulate and NADH oxidation of isolated mitochondria is uncoupled. All these effects are observed only if the mitochondrial targeting peptide and methomyl or HmT toxin are present.