A Major Secreted Elastase Is Essential for Pathogenicity of Aeromonas hydrophila

Abstract
Aeromonas hydrophila is an opportunistic pathogen and the leading cause of fatal hemorrhagic septicemia in rainbow trout. A gene encoding an elastolytic activity, ahyB , was cloned from Aeromonas hydrophila AG2 into pUC18 and expressed in Escherichia coli and in the nonproteolytic species Aeromonas salmonicida subsp. masoucida . Nucleotide sequence analysis of the ahyB gene revealed an open reading frame of 1,764 nucleotides with coding capacity for a 588-amino-acid protein with a molecular weight of 62,728. The first 13 N-terminal amino acids of the purified protease completely match those deduced from DNA sequence starting at AAG (Lys-184). This finding indicated that AhyB is synthesized as a preproprotein with a 19-amino-acid signal peptide, a 164-amino-acid N-terminal propeptide, and a 405-amino-acid intermediate which is further processed into a mature protease and a C-terminal propeptide. The protease hydrolyzed casein and elastin and showed a high sequence similarity to other metalloproteases, especially with the mature form of the Pseudomonas aeruginosa elastase (52% identity), Helicobacter pylori zinc metalloprotease (61% identity), or proteases from several species of Vibrio (52 to 53% identity). The gene ahyB was insertionally inactivated, and the construct was used to create an isogenic ahyB mutant of A. hydrophila . These first reports of a defined mutation in an extracellular protease of A. hydrophila demonstrate an important role in pathogenesis.