Abstract
Phase transformations of the Mo33Si66powder mixture under different milling conditions have been systematically investigated by x-ray diffraction, and scanning and transmission electron microscopy. The effect of the milling conditions on the Mo/Si solid state reactions (SSR) has been examined in detail. The energy transfer from the milling tools to the powder under processing has been quantified by an already assessed collision model. It has been found that the higher energetic input favors the formation of the room temperature stable phase αMoSi2, while the lower energetic input promotes the formation of the metastable phase βMoSi2. In addition, if the energy transfer is high enough, the Mo/Si reaction proceeds in a form of self-propagating high temperature synthesis (SHS). Thermodynamics and kinetics aspects related to the different SSR's are discussed.