Chlorophyll fluorescence for rapid detection of propanil-resistant barnyardgrass (Echinochloa crus-galli)

Abstract
Repeated use of propanil to control barnyardgrass (BYG) and other weeds in rice has led to the development of propanil-resistant barnyardgrass (R-BYG). R-BYG possesses elevated aryl acylamidase activity levels, which cause rapid metabolism of propanil analogous to propanil degradation in rice. The current screening method for determining propanil resistance in BYG requires about 10 mo. The present study examined the use of chlorophyll fluorescence as a more rapid method to identify propanil resistance in BYG soon after it is suspected. Chlorophyll fluorescence data from excised BYG leaf tissue (R-BYG and susceptible-BYG [S-BYG]; 13- to 41-d-old) exposed to 100 μM propanil for 2 h indicated a 95 to 100% inhibition of electron transport (photosynthesis inhibition) in both R- and S-BYG. However, when incubated in water in the dark for 22 h after the initial 2-h treatment, metabolism in R-BYG was sufficient to reduce levels of absorbed propanil and facilitate recovery. Lack of metabolism of propanil prevented recovery in S-BYG, thus allowing the two biotypes to be distinguished easily by the chlorophyll fluorescence assay. Further studies using this 2-h exposure to 100 μM propanil followed by a 22-h recovery period evaluated several assay parameters. A longer recovery time and the effects of various propanil concentrations were also evaluated. A herbicide dose-response curve showed the greatest difference in photosynthesis inhibition for both biotypes at about 100 μM propanil, but both biotypes were inhibited > 95% when treated with 400 μM propanil. Inhibition of photosynthesis in both biotypes was greatest when the recovery incubation temperature was 35 C compared to 20, 25, and 30 C. Fluorescence data from harvested tissue stored moist in plastic bags at 23 C (to simulate shipment) showed that biotypes could be differentiated even when received as late as 4 d after harvest. Thus, samples can be harvested from the field soon after propanil failure and resistance or susceptibility to propanil determined after only a few days. This technique can greatly reduce the time, space, and labor currently required to determine propanil resistance in BYG.