Optical Properties of KTP Crystals and Their Potential for Terahertz Generation

Abstract
High nonlinearity, wide transparency range and optical quality allowed potassium titanyl phosphate (KTiOPO4, KTP) crystals to be used in a wide range of nonlinear applications. The success of KTP usage in the visible and infrared (IR) ranges drives interest in applying it at longer wavelengths, that is, in the terahertz (THz) range. We use THz optical properties of KTP crystals measured by terahertz time-domain spectrometer (THz-TDS) and refractive index approximated in the form of Sellmeier equations to investigate KTP application possibilities for IR-to-THz and THz-to-THz wave conversion. As a result, phase matching for sf → f and sf → s types of difference frequency generation (DFG) of Ti:Sapphire laser (at the wavelengths of 0.65, 0.8 and 1.1 µm) is found possible, as well as second harmonic generation (SHG) of THz waves by f + sf type of interaction in the XZ principle plane of the crystal. Terahertz wave generation by phase-matched parametric processes in KTP demonstrates evident advantages in comparison with that of widely used MgO-doped LiNbO3 crystals.
Funding Information
  • Russian Foundation for Basic Research (17-32-80039)