Zinc‐dependent changes in ESR signals, NADPH oxidase and plasma membrane permeability in cotton roots

Abstract
The effect of Zn2+ on the plasma membrane permeability and superoxide radical (O2-) formation in roots was studied with cotton (Gossypium hirsutum L. cv. Delta-pine 15/21) plants grown in nutrient solution with different Zn2+ supply. Compared to Zn-sufficient plants, the plasma membrane permeability of Zn-deficient plants was increased as indicated by a 3-, 5- and 2.5-fold increase in root cell leakage of K+, NO3- and organic carbon compounds, respectively. Resupply of Zn2+ to Zn-deficient plants for 12 h substantially decreased this leakage. The effects of Zn2+ on membrane permeability were closely correlated with the levels of O2- measured by electron spin resonance (ESR) spectroscopy in the microsomal membrane fraction and in the cytosol fraction of root cells. The amplitudes of the O2- -derived Tiron ESR signal also coincided with a O2- -generating oxidase activity which was strongly dependent on the presence of NADPH and FAD. The results suggest that Zn2+ directly affects the integrity of the plasma membrane, at least in part, by interfering with O2- generation by a membrane-bound NADPH oxidase.

This publication has 25 references indexed in Scilit: