Interaction of effecting ligands with lac repressor and repressor-operator complex

Abstract
The equilibrium association constants for the binding of a wide variety of effecting ligands of the lac repressor were measured by equilibrium dialysis. Also, detailed investigations of the apparent rate of dissociation of repressor-operator comples as a function of ligand concentration were carried out for several inducers and anti-inducers. The affinity of repressor-ligand comples for operator DNA was evaluated from the specific rate constants at saturating concentrations of effecting ligand. By fitting the experimental data depicting the functional dependence of the rate of dissociation upon ligand concentrations to calculated curves, assuming simple models of the induction mechanism, the equilibrium association constant for the binding of effecting ligand to repressor-operator comples was determined. Inducers reduce the affinity of lac repressor for operator DNA by a factor of approximately 1000 under standard conditions; the extent of destabilization depends on Mg2+ ion concentration. Anti-inducers increase the affinity of repressor for operator at most a factor of five. Only one neutral ligand, which binds to repressor without altering the stability of repressor-operator comples, was found. No homotropic or heterotropic interactions in the binding of effecting ligands either to repressor or to repressor-operator complex are evident.