Regulation of Aldosterone Synthase by Activator Transcription Factor/cAMP Response Element-Binding Protein Family Members

Abstract
Aldosterone synthesis is regulated by angiotensin II (Ang II) and K+ acting in the adrenal zona glomerulosa, in part through the regulation of aldosterone synthase (CYP11B2). Here, we analyzed the role of cAMP response element (CRE)-binding proteins (CREBs) in the regulation of CYP11B2. Expression analysis of activator transcription factor (ATF)/CREB family members, namely the ATF1 and ATF2, the CREB, and the CRE modulator, in H295R cells and normal human adrenal tissue was performed using quantitative real-time PCR. Ang II-induced phosphorylation of ATF/CREB members was analyzed by Western blot analysis, and their subsequent binding to the CYP11B2 promoter using chromatin immunoprecipitation assay. Aldosterone production and CYP11B2 expression were measured in small interfering RNA-transfected cells to knockdown the expression of ATF/CREB members. CYP11B2 promoter activity was measured in H295R cells cotransfected with NURR1 (NR4A2) alone or with constitutively active vectors for ATF/CREB members. Ang II induced phosphorylation of ATF1, ATF2, and CRE modulator in a time-dependent manner. Based on chromatin immunoprecipitation analysis, there was an increased association of these proteins with the CYP11B2 promoter after Ang II and K+ treatment. Phosphorylated ATF/CREB members also bound the CYP11B2 promoter. Knockdown of ATF/CREB members reduced Ang II and K+ induction of adrenal cell CYP11B2 mRNA expression and aldosterone production. The constitutively active ATF/CREB vectors increased the promoter activity of CYP11B2 and had a synergistic effect with NURR1. In summary, these results suggest that ATF/CREB and NGFI-B family members play a crucial role in the transcriptional regulation of CYP11B2 and adrenal cell capacity to produce aldosterone.

This publication has 59 references indexed in Scilit: