Ranking vocal fold model parameters by their influence on modal frequencies

Abstract
The purpose of this study was to identify, using computational models, the vocal fold parameters which are most influential in determining the vibratory characteristics of the vocal folds. The sensitivities of vocal folds modal frequencies to variations model parameters were used to determine the most influential parameters. A detailed finite element model of the human vocal fold was created. The model was defined by eight geometric and six material parameters. The model included transitional boundary regions to idealize the complex physiological structure of real human subjects. Parameters were simultaneously varied over ranges representative of actual human vocal folds. Three separate statistical analysis techniques were used to identify the most and least sensitive model parameters with respect to modal frequency. The results from all three methods consistently suggest that a set of five parameters are most influential in determining the vibratory characteristics of the vocal folds.