The Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen 1 N Terminus Is Essential for Chromosome Association, DNA Replication, and Episome Persistence

Abstract
To persist in latently infected, proliferating cells, Kaposi's sarcoma-associated herpesvirus (KSHV) episomes must replicate and efficiently segregate to progeny nuclei. Episome persistence in uninfected cells requires latency-associated nuclear antigen 1 (LANA1) in trans and cis-acting KSHV terminal repeat (TR) DNA. The LANA1 C terminus binds TR DNA, and LANA1 mediates TR-associated DNA replication in transient assays. LANA1 also concentrates at sites of KSHV TR DNA episomes along mitotic chromosomes, consistent with a tethering role to efficiently segregate episomes to progeny nuclei. LANA1 amino acids 5 to 22 constitute a chromosome association region (Piolot et al., J. Virol. 75:3948-3959, 2001). We now investigate LANA1 residues 5 to 22 with scanning alanine substitutions. Mutations targeting LANA1 5GMR7, 8LRS10, and 11GRS13 eliminated chromosome association, DNA replication, and episome persistence. LANA1 mutated at 14TG15 retained the ability to associate with chromosomes but was partially deficient in DNA replication and episome persistence. These results provide genetic support for a key role of the LANA1 N terminus in chromosome association, LANA1-mediated DNA replication, and episome persistence.

This publication has 58 references indexed in Scilit: