High-efficiency Voltage-clamped DC-DC converter with reduced reverse-recovery current and switch-Voltage stress

Abstract
This paper investigates a high-efficiency clamped-voltage dc-dc converter with reduced reverse-recovery current and switch-voltage stress. In the circuit topology, it is designed by way of the combination of inductor and transformer to increase the corresponding voltage gain. Moreover, one additional inductor provides the reverse-current path of the transformer to enhance the utility rate of magnetic core. In addition, the voltage-clamped technology is used to reduce the switch-voltage stress so that it can select the Schottky diode in the output terminal for alleviating the reverse-recovery current and decreasing the switching and conduction losses. Furthermore, the closed-loop control methodology is utilized in the proposed scheme to overcome the voltage-drift problem of power source under the variation of loads. Thus, the proposed converter topology has a favorable voltage-clamped effect and superior conversion efficiency. Some experimental results via an example of a proton-exchange-membrane fuel cell (PEMFC) power source with a 250-W nominal rating are given to demonstrate the effectiveness of the proposed power-conversion strategy.

This publication has 16 references indexed in Scilit: