Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs

Abstract
We introduce a mechanically tunable photonic crystal structure consisting of coupled photonic crystal slabs. Using both analytic theory, and first-principles finite-difference time-domain simulations, we demonstrate that a strong variation of transmission and reflection coefficients of light through such structures can be accomplished with only a nanoscale variation of the spacing between the slabs. Moreover, by specifically configuring the photonic crystal structures, high sensitivity can be preserved in spite of significant fabrication-related disorders. We expect such structures to play important roles in micromechanically tunable optical sensors and filters.