Genetic Targeting

Abstract
The arylalkylamine N-acetyltransferase (AA-NAT) gene is strongly expressed in the rat primarily in the pineal gland; low levels of expression are also found in the retina. AA-NAT catalyzes the key regulatory step controlling rhythmic melatonin output: the acetylation of serotonin. In the rat, the AA-NAT gene is expressed at night. This is controlled partly by cyclic AMP (cAMP) acting through a composite cAMP-responsive element-CCAAT site located upstream of the transcription start point. In the present study, we have extended our previous in vitro findings and found that additional elements in the 5' flanking region and first intron play an important role in the regulation of the AA-NAT gene. This led us to test the influence of an AA-NAT 5' flanking segment on the expression of the bacterial chloramphenicol acetyltransferase gene in a rat transgenic model. The results of this study clearly demonstrate that the segment of the AA-NAT gene that encompasses the minimal promoter and the first intron is able to confer the highly specific pineal/retinal and time-of-day patterns of AA-NAT gene expression. This advance also provides a tool that selectively targets genetic expression to pinealocytes and retinal photoreceptors, providing new experimental opportunities to probe gene expression in these tissues.