Nonsmooth sequential analysis in Asplund spaces

Abstract
We develop a generalized differentiation theory for nonsmooth functions and sets with nonsmooth boundaries defined in Asplund spaces. This broad subclass of Banach spaces provides a convenient framework for many important applications to optimization, sensitivity, variational inequalities, etc. Our basic normal and subdifferential constructions are related to sequential weak-star limits of Fréchet normals and subdifferentials. Using a variational approach, we establish a rich calculus for these nonconvex limiting objects which turn out to be minimal among other set-valued differential constructions with natural properties. The results obtained provide new developments in infinite dimensional nonsmooth analysis and have useful applications to optimization and the geometry of Banach spaces.

This publication has 45 references indexed in Scilit: