Attenuation of the acute adriamycin-induced cardiac and hepatic oxidative toxicity by N-(2-mercaptopropionyl) glycine in rats.

Abstract
The protective effect of the synthetic aminothiol, N-(2-mercaptopropionyl) glycine (MPG) on adriamycin (ADR) induced acute cardiac and hepatic oxidative toxicity was evaluated in rats. ADR toxicity, induced by a single intraperitoneal injection (15 mg/kg), was indicated by an elevation in the level of serum glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), creatine kinase isoenzyme (CK-MB), and lactic dehydrogenase (LDH). ADR produced significant elevation in thiobarbituric acid reactive substances (TBARS), indicating lipid peroxidation, and significantly inhibited the activity of superoxide dismutase (SOD) in heart and liver tissues. In contrast, a single injection of ADR did not affect the cardiac or hepatic glutathione (GSH) content and cardiac catalase (CAT) activity but elevated hepatic CAT. Pretreatment with MPG, (2.5 mg/kg) intragastrically, significantly reduced TBARS concentration in both heart and liver and ameliorated the inhibition of cardiac and hepatic SOD activity. In addition, MPG significantly decreased the serum level of GOT, GPT, CK-MB, and LDH of ADR treated rats. These results suggest that MPG exhibited antioxidative potentials that may protect heart and liver against ADR-induced acute oxidative toxicity. This protective effect might be mediated, at least in part, by the high redox potential of sulfhydryl groups that limit the activity of free radicals generated by ADR.