Abstract
Background: Airway remodeling in asthma is the result of increased expression of connective tissue proteins, airway smooth muscle cell (ASMC) hyperplasia and hypertrophy. TGF-β1 has been found to increase ASMC proliferation. The activation of mitogen-activated protein kinases (MAPKs), p38, ERK, and JNK, is critical to the signal transduction associated with cell proliferation. In the present study, we determined the role of phosphorylated MAPKs in TGF-β1 induced ASMC proliferation. Methods: Confluent and growth-arrested bovine ASMCs were treated with TGF-β1. Proliferation was measured by [3H]-thymidine incorporation and cell counting. Expressions of phosphorylated p38, ERK1/2, and JNK were determined by Western analysis. Results: In a concentration-dependent manner, TGF-β1 increased [3H]-thymidine incorporation and cell number of ASMCs. TGF-β1 also enhanced serum-induced ASMC proliferation. Although ASMCs cultured with TGF-β1 had a significant increase in phosphorylated p38, ERK1/2, and JNK, the maximal phosphorylation of each MAPK had a varied onset after incubation with TGF-β1. TGF-β1 induced DNA synthesis was inhibited by SB 203580 or PD 98059, selective inhibitors of p38 and MAP kinase kinase (MEK), respectively. Antibodies against EGF, FGF-2, IGF-I, and PDGF did not inhibit the TGF-β1 induced DNA synthesis. Conclusion: Our data indicate that ASMCs proliferate in response to TGF-β1, which is mediated by phosphorylation of p38 and ERK1/2. These findings suggest that TGF-β1 which is expressed in airways of asthmatics may contribute to irreversible airway remodeling by enhancing ASMC proliferation.

This publication has 59 references indexed in Scilit: