Crystal Structures of the Adenylate Sensor from Fission Yeast AMP-Activated Protein Kinase

Abstract
The 5′-AMP (adenosine monophosphate)–activated protein kinase (AMPK) coordinates metabolic function with energy availability by responding to changes in intracellular ATP (adenosine triphosphate) and AMP concentrations. Here, we report crystal structures at 2.9 and 2.6 Å resolution for ATP- and AMP-bound forms of a core αβγ adenylate-binding domain from the fission yeast AMPK homolog. ATP and AMP bind competitively to a single site in the γ subunit, with their respective phosphate groups positioned near function-impairing mutants. Unexpectedly, ATP binds without counterions, amplifying its electrostatic effects on a critical regulatory region where all three subunits converge.