Variation in Growth Rate between Arabidopsis Ecotypes Is Correlated with Cell Division and A-Type Cyclin-Dependent Kinase Activity

Abstract
We used a kinematic analysis to investigate the growth processes responsible for variation in primary root growth between 18 ecotypes of Arabidopsis. Root elongation rate differed 4-fold between the slowest (Landsberg erecta, 71 μm h−1) and fastest growing line (Wassilewskija [Ws]; 338 μm h−1). This difference was contributed almost equally by variations in mature cortical cell length (84 μm [Landsbergerecta] to 237 μm [Ws]) and rate of cell production (0.63 cell h−1 [NW108] to 1.83 cell h−1[Ws]). Cell production, in turn, was determined by variation in cell cycle duration (19 h [Tsu] to 48 h [NW108]) and, to a lesser extent, by differences in the number of dividing cells (32 [Weiningen] to 61 [Ws]). We found no correlation between mature cell size and endoreduplication, refuting the hypothesis that the two are linked. However, there was a strong correlation between cell production rates and the activity of the cyclin-dependent kinase (CDKA). The level of the protein could explain 32% of the variation in CDKA. Therefore, it is likely that regulators of CDKA, such as cyclins and inhibitors, are also involved. These data provide a functional link between cell cycle regulation and whole-plant growth rate as affected by genetic differences.