Abstract
Several factors that contribute to the success of aldol cyclotrimerizations have been clarified as part of an effort to shed light on the inner workings of this century old reaction. The use of 4,7-di-tert-butylacenaphthenone (11) as a mechanistic probe molecule has led to intriguing discoveries about temperature, solvent, and solubility effects. Solvents that are both polarizable and somewhat polar, e.g., o-dichlorobenzene (ODCB), work best for the aromatic ketones examined. Certain Brønsted acids were found to work better than Lewis acids as catalysts for the archetypal aldol cyclotrimerization of indanone (2) in aprotic solvents, and a strong dependence on the pKa of the acid was observed. A standardized protocol, using p-toluenesulfonic acid monohydrate, is shown to work well in a number of test cases.