Carbon-based printed contacts for organic thin-film transistors

Abstract
Organic thin-film transistors (OTFTs) employing a flexible, conductive carbon particle-polymer composite material for the drain-source ohmic contacts are reported herein. The contacts can be deposited using standard stencil printing techniques and are processed at low temperature, thereby facilitating their integration with heat sensitive substrates. The carbon contacts were stencil printed on a silicon dioxide gate dielectric layer, and the poly(3-hexylthiophene) semiconductor was deposited via solution casting from toluene. The OTFTs exhibited field-effect behavior over a range of drain-source and gate voltages, similar to devices employing deposited gold contacts.