Hydraulic Conductivity and Leachate Characteristics of Stabilized Fly Ash

Abstract
Disposal of fly ash on land amounts to sacrificing precious land space. Recycling of fly ash is one of the methods of solving the disposal problem. Stabilization of a low lime fly ash with lime and gypsum was studied through large scale tests on the stabilized material designed to simulate field recycling conditions as closely as possible, and found to be a very effective means to control hydraulic conductivity and leachate characteristics. The effects of moulding water content, lime content, gypsum content, curing period, and flow period on hydraulic conductivity, and on leachate of metals flowing out of the stabilized fly ash are reported herein. With proper proportioning of the mix, and adequate curing, the values of hydraulic conductivity on the order of 10−7 cm/s were achieved. The concentrations of As, Cd, Cr, Cu, Fe, Hg, Mg, Ni, Pb, and Zn in the effluent emanating from the hydraulic conductivity specimens of mixes with higher proportions of lime or lime and gypsum were below threshold limits acceptable for contaminants flowing into ground water.

This publication has 12 references indexed in Scilit: