Abstract
Extracellular calcium concentration has been shown to be an important determinant of proliferation rate in a number of cell culture models. Recently, the role of calcium as a regulator of cellular differentiation has also become apparent. This effect of calcium was exemplified by the discovery that keratinocytes of mouse or human origin grew as a proliferating monolayer in medium with a calcium concentration of 0.02-0.09 mM but that proliferation ceased and cells stratified and cornified when calcium was increased greater than 0.1 mM. While the morphological and biological effects of changes in calcium concentration are dramatic in keratinocyte cultures, it has been difficult to identify specific protein changes associated with the modulation of maturation. In vivo, however, several proteins that are markers for stratified squamous epithelia have been identified by specific autoimmune sera. Pemphigoid antigen is a 220-kdalton protein found in the basement membrane and closely associated with the plasma membrane of the basal cell. Pemphigus antigen is a 130-kdalton glycoprotein found on the cell surface of stratifying epithelial cells. Immunofluorescence staining of cells cultured in low Ca2+ or cells switched to high Ca2+ for 48 h before staining demonstrated that pemphigoid antigen was detected in low Ca2+ cultures but was diminished or absent in high Ca2+ cultures and that pemphigus antigen was seen only in high Ca2+ cultures. The synthesis of each antigen was studied in immunoprecipitates of cell lysates radiolabeled with 14C-amino acids or D-[1-14C]glucosamine. Pemphigoid antigen was synthesized mainly by proliferating cells in low Ca2+ medium and its synthesis was decreased by greater than 90% in cells switched to high Ca2+ medium. In contrast, synthesis of pemphigus antigen was detected only in stratifying cells cultured in high Ca2+ medium. These studies indicate that extracellular calcium concentrations which modulate the transition between proliferating and stratifying epidermal cells also modulate, in parallel, the synthesis of specific marker proteins for these cell types.