Continuous-Time Digital Controller for High-Frequency DC-DC Converters

Abstract
This paper introduces a voltage mode digital controller for low-power high-frequency DC-DC switch-mode power supplies (SMPS) that has fast transient response, approaching physical limitations of a given power stage. In steady state, the controller operates as a conventional pulsewidth modulation regulator and during transients it utilizes a novel fast voltage recovery mechanism, based on real-time processing of the output voltage in digital domain. This continuous-time digital signal processing mechanism is implemented with a very simple processor consisting of a set of asynchronous comparators, delay cells, and combinatorial logic. To eliminate the need for current measurement and calculate the optimal switching sequence of the power stage transistors, the processor performs a capacitor charge balance algorithm, which is based on the detection of the output voltage peak/valley point. The effectiveness of the controller is demonstrated on an experimental 5 W, 5 V to 1.8 V, 400 kHz buck converter. The converter recovers from load transients through a single on-off action of the power switch, virtually reaching the shortest possible time, limited by the values of the power stage filter components only.

This publication has 34 references indexed in Scilit: