Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers

Abstract
We measured the sensitivity of macaque ganglion cells to luminance and chromatic sinusoidal modulation. Phasic ganglion cells of the magnocellular pathway (M-pathway) were the more sensitive to luminance modulation, and tonic ganglion cells of the parvocellular pathway (P-pathway) were more sensitive to chromatic modulation. With decreasing retinal illuminance, phasic ganglion cells’ temporal sensitivity to luminance modulation changed in a manner that paralleled psychophysical data. The same was true for tonic cells and chromatic modulation. Taken together, the data suggest strongly that the cells of the M-pathway form the physiological substrate for detection of luminance modulation and the cells of the P-pathway the substrate for detection of chromatic modulation. However, at high light levels, intrusion of a so-called luminance mechanism near 10 Hz in psychophysical detection of chromatic modulation is probably due to responses in the M-pathway, arising primarily from a nonlinearity of cone summation. Both phasic and tonic ganglion cells responded to frequencies higher than can be psychophysically detected. This suggests that central mechanisms, acting as low-pass filters, modify these cells’ signals, though the corner frequency is lower for the P-pathway than for the M-pathway. For both cell types, the response phase at different frequencies was consistent with the cells’ description as linear filters with a fixed time delay.