Abstract
Particle Image Velocimetry (PIV), pressure, and noise measurements are used to study the effect of modifications to tongue and impeller geometries on the flow structure and resulting noise in a centrifugal pump. It is demonstrated that the primary sources of noise are associated with interactions of the nonuniform outflux from the impeller (jet/wake phenomenon) with the tongue. Consequently, significant reduction of noise is achieved by increasing the gap between the tongue and the impeller up to about 20 percent of the impeller radius. Further increase in the gap affects the performance adversely with minimal impact on the noise level. When the gap is narrow, the primary sources of noise are impingement of the wake on the tip of the tongue, and tongue oscillations when the pressure difference across it is high. At about 20 percent gap, the entire wake and its associated vorticity trains miss the tongue, and the only (quite weak) effect of nonuniform outflux is the impingement of the jet on the tongue. An attempt is also made to reduce the nonuniformity in outflux from the impeller by inserting short vanes between the blades. They cause reduction in the size of the original wakes, but generate an additional jet/wake phenomenon of their own. Both wakes are weak to a level that their impacts on local pressure fluctuations and noise are insignificant. The only remaining major contributor to noise is tongue oscillations. This effect is shown to be dependent on the stiffness of the tongue.