THE ACCURACY OF PREDICTING COMPRESSIBILITY FACTOR FOR SOUR NATURAL GASES

Abstract
This paper presents the initial stage of an effort aimed at developing a new correlation to estimate pseudo critical properties for sour gas when the exact composition is not known. Several mixing rules and gas gravity correlations available in the literature are first evaluated and compared. The evaluation is performed on a large database consisting of more than 2106 samples of sour gas compositions collected worldwide. Several evaluation criteria are used including the average absolute deviation (AAD), the standard deviation (SD), the coefficient of correlation, R, and cross plots and error histograms. The mixing rules include: Kay's mixing rule combined with Wichert–Aziz correlation for the presence of non-hydrocarbons, SSBV mixing rule with Wichert and Aziz, Corredor et al. mixing rule, and Piper et al. mixing rule. These methods, in one form or another, use information on gas composition. Three different other methods that are based on gas gravity alone were also analyzed. These are: Standing, Sutton, and Elsharkawy et al. gas gravity correlations. While the methods based on knowledge of composition showed reasonable accuracy, those based on gas gravity alone showed weak accuracy with low correlation coefficients. A new gas gravity correlation that is based on the fraction of non-hydrocarbons present in the sour gas was proposed. Preliminary results indicate that a good improvement over past gravity correlations was achieved. The compositional correlations, still show, however, better accuracy. Research is still going on to come up with more accurate correlations that are based on only readily available descriptors.