Abstract
Concrete bridge decks reinforced with fiber reinforced polymer (FRP) composite panels have recently been used where the FRP panels also serve as the permanent formwork for concrete. Comparing to their short-term behavior, their long-term performance especially under repeated traffic loads (fatigue) has not yet been widely known. This paper presents a fatigue analysis tool developed for a new steel-free concrete bridge deck reinforced with carbon FRP stay-in-place form. The developed model takes into account the cyclic creep of concrete in compression, the reduction in flexural stiffness due to fatigue tensile cracking and the reduction in modulus of rupture under cyclic loading. Comparisons with experimental data show reasonable agreement where a full-size 2-span deck specimen was subjected to millions of fatigue cycles. The parametric study recommends reducing the amount of FRP reinforcement and concrete strength of the current design, and lower loading rate may introduce more stiffness degradation in the system.