The origin of the open-circuit voltage in polyfluorene-based photovoltaic devices

Abstract
The influence of device structure on the open-circuit voltage of polyfluorene-based photovoltaic devices has been investigated. Bilayers of hole- and electron-accepting polyfluorenes have been fabricated using an aqueous “float-off” lamination technique and subsequently incorporated into organic photovoltaic devices with a range of cathodes and anodes. A scaling of the open-circuit voltage with electrode work function difference has been observed with an additional intensity- dependent contribution from the active layer within the device. This additional contribution is attributed to photoinduced generation of carriers, whereby accumulation of charge at the polymer–polymer heterojunction results in a dipole across the interface and gives rise to a diffusion current that must be counterbalanced by a drift current at open circuit.