Bond ionicity and structural stability of some average-valence-five materials studied by x-ray photoemission

Abstract
Core-level and valence-band spectra have been obtained by means of x-ray photoemission spectroscopy for the group IV, V, and VI elements Ge, Sn, Pb, As, Sb, Bi, S, Se, and Te and the group IV-VI compounds GeS, GeSe, GeTe, SnS, SnSe, SnTe, PbS, PbSe, and PbTe. These results, taken under ultrahigh-vacuum conditions with unmonochromatized x rays, are presented and discussed in terms of the bonding in materials with an average valence of 5. The effects of relaxation on the chemical shifts are found to be relatively small. The chemical shifts are found to vary in a manner similar to that expected from the magnitude of the elemental electronegativities except for the ordering of the shifts of GeS and GeSe. Relative charge transfers are calculated from the chemical shifts and are found to be in general agreement with ionicities calculated using the Phillips-Van Vechten theory although there is some disagreement as to their magnitudes. A consideration of the structures of the compounds relative to the charge transfers demonstrates the importance of metallic as well as covalent and ionic bonding in determining the most stable structure. The value of critical ionicity carried over from the average-valence-4 materials does not apply to the average-valence-5 materials and this concept does not appear useful in understanding their bonding because of the increased importance of nondirectional metallic bonding.